-
1 stress resolved into two components
- stress resolved into two components
- n
напряжение, разложенное на две составляющие
Англо-русский строительный словарь. — М.: Русский Язык. С.Н.Корчемкина, С.К.Кашкина, С.В.Курбатова. 1995.
Англо-русский словарь строительных терминов > stress resolved into two components
-
2 reliability (electric system reliability has two components, adequacy and security)
Энергосистемы: надежностьУниверсальный англо-русский словарь > reliability (electric system reliability has two components, adequacy and security)
-
3 ribbons of two components linked by proton-transfer bonds
Универсальный англо-русский словарь > ribbons of two components linked by proton-transfer bonds
-
4 stress resolved into two components
Строительство: напряжение, разложенное на две составляющиеУниверсальный англо-русский словарь > stress resolved into two components
-
5 this potential can be split into two components, one represents the effect of
Математика: этот потенциал можно разложить на две компоненты, одна из которых представляет (...) (...)Универсальный англо-русский словарь > this potential can be split into two components, one represents the effect of
-
6 stress
- stress
- n1. (внутреннее) усилие, внутренняя сила
2. (механическое) напряжение
3. нагрузка на единицу площади, интенсивность нагрузки, удельная нагрузка
stress acting away from the joint — усилие ( в элементе фермы), действующее от узла
stresses arising from bending and axial loading — напряжения, возникающие от поперечного изгиба и действия продольных сил
stress constant across the section — напряжение, постоянное по всему сечению
stress due to prestress — усилие обжатия бетона; напряжение в бетоне, вызванное обжатием
stresses due to wind forces — напряжения от сил ветра, напряжения от ветровой нагрузки
stresses induced by loads — напряжения, вызванные нагрузкой [нагружением] ( в отличие от температурных напряжений)
stress in reinforcement — напряжение [усилие] в арматуре
stresses in truss components [in truss members] — усилия в стержнях [элементах фермы]
stress resolved into two components — напряжение, разложенное на две составляющие
stress varying from point to point — напряжение, меняющееся от точки к точке ( сечения элемента)
stresses with the elastic limit — напряжения, не превышающие предела упругости; напряжения в упругой области
- actual stress
- additional stress
- allowable stress
- allowable unit stress
- alternate stress
- anchorage bond stress
- average stress
- axial stress
- bar stress
- bearing unit stress
- bearing stress
- belt stress
- bending stress
- bending failure stress
- biaxial stress
- blow stress
- bond stress
- bottom-chord stress
- boundary stress
- breaking stress
- buckling stress
- calculated stress
- circumferential unit stress
- circumferential stress
- combined stresses
- combined bearing, bending, and shear stresses
- combined shear and bending stress
- compression stress
- compressive stress in bending
- concentrated-load stress
- constant stress
- crack-inducing stress
- crippling stress
- critical stress
- crushing stress
- cycle stress
- dead load stress
- design stress
- development bond stress
- deviation stress
- deviator stress
- direct stress
- drying shrinkage stresses
- dynamic stress
- edge stress
- effective stress
- equivalent stress
- erection stress
- extreme fiber stress
- extreme stress
- failure stress
- fatigue stress
- fiber stress
- final stress
- flexible stress
- floor stress during operation
- floor stress when climbing
- flow stress
- fluctuating stresses
- fracture stress
- freezing stresses
- gravity stress
- handling stresses
- high localized stresses
- hoop stress
- hydrostatic stress
- ideal main stress
- impact stresses
- initial stresses
- intergranular stress
- intermediate principal stress
- jacking stress
- larger principal stress
- limiting stresses permitted in the standard
- linearly varying stresses
- live-load stress
- local stresses
- local bond stress
- longitudinal stress
- main stress
- maximum stress
- maximum allowable stress
- maximum shearing stress
- mean stress
- mean cycle stress
- mean fatigue stress
- membrane stresses
- meridian stress
- negative normal stress
- neutral stress
- normal stress
- octahedral normal stress
- octahedral shear stress
- peak stress
- permissible stress
- plate stresses
- point-load stress
- positive normal stress
- primary stress
- principal stresses
- principal tensile stress
- proof stress
- proof stress at 0.2 percent set
- pulsating stress
- radial stress
- radial shearing stress
- reduced main stress
- reinforcement stress
- repeated stress
- residual stress
- reversed stress
- rupture stress
- safe stress
- secondary stresses
- service stress
- settlement stresses
- shear stress
- shear stresses on oblique planes
- shear buckling stress
- shearing stress
- shrinkage-related stress
- shrinkage stress
- smaller principal stress
- spherical stress
- splitting tensile stress
- static stress
- surface stress
- tangential stress
- temperature stress
- temporary stress
- tensile stress
- tensile stress due to bending
- thermal stress
- timber stresses
- time-dependent stress
- top-chord stress
- torsional stress
- total stress
- transverse bending stress in flange
- true stress
- truss stresses
- truss stresses determined by method of sections
- twisting stress
- ultimate stress
- ultimate shear stress
- ultimate tensile stress
- unit stress
- unit stress produced by design loads
- unrelieved stress
- working stress
- yield stress
Англо-русский строительный словарь. — М.: Русский Язык. С.Н.Корчемкина, С.К.Кашкина, С.В.Курбатова. 1995.
-
7 stress
1) (механическое) напряжение; напряжённое состояние; условное напряжение2) нагрузка, усилие3) гидроудар4) воздействие5) нагрузка на единицу площади, интенсивность нагрузки, удельная нагрузка•- actual stress - admissible stress - advancing load stress - allowable stress - alternate stress - applied stress - arch stress - axial stress - bar stress - basic stress - bearing stress - belt stresses - bending stress - blow stress - bond stress - braking stress - breaking stress - calculated stress - chord stress - circular symmetrical stress - combined stress - completely reversed stresses - complex stress - compressive stress - compressive stress in bending - concrete stress - constant stress - cooling stress - couple stress - crack stress - crackforming stress - crippling stress - critical stress - critical compressive stress - cross-bending stress - cyclical stresses - dead stress - dead-load stress - design stress - direct stress - discontinuity stress - downward stress - dynamic stress - ecological stress - edge stress - effective stress - elastic stress - engineering stress - erection stress - external stress - fabrication stress - failing stress - fatigue stress - fatigue limit stress - fibre stress - final stress - flexural stress - floor stress - fluctuating stresses - friction-induced stress - functional stress - gravity stress - ground stress - handling stress - heat stress - hoist stresses - hoop stress - horizontal stress - impact stress - indirect stress - induced stress - inherent stresses - initial stress - intermediate stress - internal stress - jacking stress - lateral stress - limiting maximum stress - linear stress - live load stress - load stress - local stresses - locked-up stresses - longitudinal stress - mechanical stress - net stress - neutral stress - normal stress - operating stress - operational stress - permissible stress - plane stress - point-load stress - primary stress - principal stresses - proof stress - radial stress - reinforcement stresses - relaxation of stresses - repeated stresses - residual stress - reverse stress - rupture stress - safe stress - secondary stress - shearing stress - shock stress - simple stress - snow load stress - specific stress - static stress - subsidiary stress - surface stress - sustained stress - sway stress - tangential stress - temperature stress - tensile stress - thermal stress - thermal stress on structure - three-dimensional stress - time-dependant stress - torsional stress - total stress - transverse stress - true stress - twisting stress - ultimate stress - uniaxial stress - unit stress - unsafe stress - varying stress - vibratory stress - volumetric stress - water stress - wave stress - welding stress - wheel-load stress - wind stress - working stress - yield stress - yield point stressstress due to prestress — усилие ( в бетоне), вызванное предварительным напряжением
* * *1. (внутреннее) усилие, внутренняя сила2. (механическое) напряжение3. нагрузка на единицу площади, интенсивность нагрузки, удельная нагрузкаstress acting away from the joint — усилие ( в элементе фермы), действующее от узла
stresses arising from bending and axial loading — напряжения, возникающие от поперечного изгиба и действия продольных сил
stress constant across the section — напряжение, постоянное по всему сечению
stress due to prestress — усилие обжатия бетона; напряжение в бетоне, вызванное обжатием
stresses due to wind forces — напряжения от сил ветра, напряжения от ветровой нагрузки
stresses induced by loads — напряжения, вызванные нагрузкой [нагружением] ( в отличие от температурных напряжений)
stress in reinforcement — напряжение [усилие] в арматуре
stresses in truss components [in truss members] — усилия в стержнях [элементах фермы]
stress resolved into two components — напряжение, разложенное на две составляющие
stress varying from point to point — напряжение, меняющееся от точки к точке ( сечения элемента)
- actual stressstresses with the elastic limit — напряжения, не превышающие предела упругости; напряжения в упругой области
- additional stress
- allowable stress
- allowable unit stress
- alternate stress
- anchorage bond stress
- average stress
- axial stress
- bar stress
- bearing unit stress
- bearing stress
- belt stress
- bending stress
- bending failure stress
- biaxial stress
- blow stress
- bond stress
- bottom-chord stress
- boundary stress
- breaking stress
- buckling stress
- calculated stress
- circumferential unit stress
- circumferential stress
- combined stresses
- combined bearing, bending, and shear stresses
- combined shear and bending stress
- compression stress
- compressive stress in bending
- concentrated-load stress
- constant stress
- crack-inducing stress
- crippling stress
- critical stress
- crushing stress
- cycle stress
- dead load stress
- design stress
- development bond stress
- deviation stress
- deviator stress
- direct stress
- drying shrinkage stresses
- dynamic stress
- edge stress
- effective stress
- equivalent stress
- erection stress
- extreme fiber stress
- extreme stress
- failure stress
- fatigue stress
- fiber stress
- final stress
- flexible stress
- floor stress during operation
- floor stress when climbing
- flow stress
- fluctuating stresses
- fracture stress
- freezing stresses
- gravity stress
- handling stresses
- high localized stresses
- hoop stress
- hydrostatic stress
- ideal main stress
- impact stresses
- initial stresses
- intergranular stress
- intermediate principal stress
- jacking stress
- larger principal stress
- limiting stresses permitted in the standard
- linearly varying stresses
- live-load stress
- local stresses
- local bond stress
- longitudinal stress
- main stress
- maximum stress
- maximum allowable stress
- maximum shearing stress
- mean stress
- mean cycle stress
- mean fatigue stress
- membrane stresses
- meridian stress
- negative normal stress
- neutral stress
- normal stress
- octahedral normal stress
- octahedral shear stress
- peak stress
- permissible stress
- plate stresses
- point-load stress
- positive normal stress
- primary stress
- principal stresses
- principal tensile stress
- proof stress
- proof stress at 0.2 percent set
- pulsating stress
- radial stress
- radial shearing stress
- reduced main stress
- reinforcement stress
- repeated stress
- residual stress
- reversed stress
- rupture stress
- safe stress
- secondary stresses
- service stress
- settlement stresses
- shear stress
- shear stresses on oblique planes
- shear buckling stress
- shearing stress
- shrinkage-related stress
- shrinkage stress
- smaller principal stress
- spherical stress
- splitting tensile stress
- static stress
- surface stress
- tangential stress
- temperature stress
- temporary stress
- tensile stress
- tensile stress due to bending
- thermal stress
- timber stresses
- time-dependent stress
- top-chord stress
- torsional stress
- total stress
- transverse bending stress in flange
- true stress
- truss stresses
- truss stresses determined by method of sections
- twisting stress
- ultimate stress
- ultimate shear stress
- ultimate tensile stress
- unit stress
- unit stress produced by design loads
- unrelieved stress
- working stress
- yield stress -
8 frequency conversion
преобразование частоты
Процесс линейного переноса полосы частот, занимаемой сигналом, в другую область частотного спектра с инверсией или без нее.
[Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]Тематики
- электросвязь, основные понятия
- электротехника, основные понятия
EN
сдвиг частоты
смещение частоты
-
[IEV number 151-13-70]EN
frequency translation
frequency changing
frequency conversion
transfer of all the spectral components of a signal from one position in the frequency spectrum to another, in such a way that the frequency difference for any two components is preserved as well as their relative amplitude and relative phase
NOTE – Frequency translation may be accompanied by frequency inversion.
Source: 702-06-64 MOD, 713-07-20 MOD
[IEV number 151-13-70]FR
transposition en fréquence, f
changement de fréquence, m
conversion de fréquence, f
transfert dans le spectre des fréquences de l'ensemble des composantes spectrales d'un signal de façon que les différences des fréquences des composantes de tout couple de composantes soient conservées, ainsi que leurs amplitudes relatives et leurs phases relatives
NOTE – Une transposition en fréquence peut être accompagnée d'une inversion de fréquence.
Source: 702-06-64 MOD, 713-07-20 MOD
[IEV number 151-13-70]EN
DE
FR
Англо-русский словарь нормативно-технической терминологии > frequency conversion
-
9 frequency changing
сдвиг частоты
смещение частоты
-
[IEV number 151-13-70]EN
frequency translation
frequency changing
frequency conversion
transfer of all the spectral components of a signal from one position in the frequency spectrum to another, in such a way that the frequency difference for any two components is preserved as well as their relative amplitude and relative phase
NOTE – Frequency translation may be accompanied by frequency inversion.
Source: 702-06-64 MOD, 713-07-20 MOD
[IEV number 151-13-70]FR
transposition en fréquence, f
changement de fréquence, m
conversion de fréquence, f
transfert dans le spectre des fréquences de l'ensemble des composantes spectrales d'un signal de façon que les différences des fréquences des composantes de tout couple de composantes soient conservées, ainsi que leurs amplitudes relatives et leurs phases relatives
NOTE – Une transposition en fréquence peut être accompagnée d'une inversion de fréquence.
Source: 702-06-64 MOD, 713-07-20 MOD
[IEV number 151-13-70]EN
DE
FR
Англо-русский словарь нормативно-технической терминологии > frequency changing
-
10 frequency translation
сдвиг частоты
смещение частоты
-
[IEV number 151-13-70]EN
frequency translation
frequency changing
frequency conversion
transfer of all the spectral components of a signal from one position in the frequency spectrum to another, in such a way that the frequency difference for any two components is preserved as well as their relative amplitude and relative phase
NOTE – Frequency translation may be accompanied by frequency inversion.
Source: 702-06-64 MOD, 713-07-20 MOD
[IEV number 151-13-70]FR
transposition en fréquence, f
changement de fréquence, m
conversion de fréquence, f
transfert dans le spectre des fréquences de l'ensemble des composantes spectrales d'un signal de façon que les différences des fréquences des composantes de tout couple de composantes soient conservées, ainsi que leurs amplitudes relatives et leurs phases relatives
NOTE – Une transposition en fréquence peut être accompagnée d'une inversion de fréquence.
Source: 702-06-64 MOD, 713-07-20 MOD
[IEV number 151-13-70]EN
DE
FR
транспонирование частоты
Преобразование спектра частот путем его линейного сдвига по частоте, т.е. без инвертирования спектра. Транспонирование частоты широко используется в системах с частотным разделением каналов, где каждый канал преобразуется на свою поднесущую, причем соседние несущие сдвинуты друг относительно друга на ширину полосы канала.
[Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]Тематики
- электросвязь, основные понятия
EN
Англо-русский словарь нормативно-технической терминологии > frequency translation
-
11 reliability
[rɪˌlaɪə'bɪlɪtɪ]1) Общая лексика: надёжность, прочность, достоверность (инф.), надёжность (инф.)2) Медицина: достоверность3) Техника: безопасность, безотказность, бесперебойность, безопасность действия (машины), безопасность работы (машины)4) Строительство: безотказность (в эксплуатации)5) Математика: эксплуатационная надёжность6) Метеорология: обеспеченность (Что-то вроде вероятности совпадения реальной и расчётной средних температур самого холодного дня и пятидневки года.)7) Железнодорожный термин: надёжность (действия или работы)8) Юридический термин: достоверность фактов9) Экономика: безотказность (в работе)10) Автомобильный термин: безопасность действия11) Горное дело: безопасность (работы или действия машины)12) Нефть: вероятность безотказной работы, показатель надёжности13) Картография: достоверность (напр, данных)14) Метрология: безотказность (в работе)15) Деловая лексика: безопасность работы16) Нефтегазовая техника достоверность запасов17) Авиационная медицина: безопасность (работы), стабильность (результатов тестирования)18) Макаров: безопасность работы или действия (машины)19) Безопасность: криптостойкость20) Энергосистемы: (electric system reliability has two components, adequacy and security) надежность21) Газовые турбины: надёжность (в работе) -
12 caravan
жилой фургон-автоприцеп
Передвижное жилье на автоприцепе.
Примечание
В отличие от автодома, являющегося транспортным средством, жилой фургон-автоприцеп предполагает наличие автотранспортного средства, к которому прицепляется жилой фургон.
[ ГОСТ Р 53423-2009]
Тематики
EN
DE
FR
караван эстафеты
Кортеж автомобилей, окружающих факелоносца для защиты Олимпийского огня и содействия его продвижению. Караван состоит из двух частей – передовой колонны, отвечающей за организацию групп поддержки, и основной части каравана, на которую возлагается задача защищать Олимпийский огонь и факелоносцев, и содействовать их продвижению. Количество автомобилей в составе каравана определяется соглашениями между ОКОИ, провайдером и спонсорами эстафеты.
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]EN
caravan
Motorcade of vehicles surrounding the torchbearer to protect and promote the passage of the Olympic flame. The caravan contains two components: the advance caravan which is responsible for crowd building and promotion and the core caravan which is responsible for the protection and movement of the Olympic flame and torchbearers. The final number of vehicles in the caravan is subject to presenting partner(s), Provider and OCOG contracts.
[Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > caravan
-
13 component
1) компонент, составная часть, элемент; деталь, обрабатываемая деталь2) составляющая (напр. силы)•- accessory componentsto reverse the component — поворачивать деталь на 180°
- add-on component
- aerospace components
- affected component
- alloy component
- architectural component
- arm component
- assembled component
- axial component
- axial leaded component
- bar-coded component
- bar-shaped component
- base component
- bought-in component
- bought-out component
- building block components
- Cartesian components of velocity
- centers-mounted component
- chucked component
- component of force
- component of gravity
- component of unbalance
- composed component
- composite component
- computer component
- conjugated component
- constant component
- contour-milled component
- control component
- controlled component
- coupling component
- cross component
- cutting force component
- data handling component
- defense-related components
- delay component
- direct component
- discontinued components
- drive components
- encapsulated component
- error component
- executive component
- expert system component
- fabricated components
- finish-machined component
- first-off component
- floating component
- force component
- forced component
- formed component
- free component
- front component of unbalance
- fundamental component
- gear component
- general components
- generic components
- gravitational component
- harmonic component
- high-frequency component
- incorrect component
- independent component
- injection-molded component
- in-tolerance component
- irregular component
- key component
- key-turned component
- laser beam travel optical component
- lateral component
- lead component
- machine components
- master component
- mid-of-tolerance component
- miniature component
- misbehaving component
- modular components
- multibend component
- multifeature component
- nonrotational component
- nonstock components
- normalized components
- obsolete components
- odd component
- odd-shaped component
- OEM components
- off-the-shelf components
- one-axis component
- one-off component
- pallet-mounted component
- periodic component
- peripheral force component
- piece part component
- point-to-point NC component
- power-steering components
- preamp component
- preformed component
- pre-production components
- primary component
- primitive component
- principal force component
- printed component
- programmable component
- projection component
- radial component of driving force
- radial component
- radial force component
- rear component of unbalance
- replacement component
- restoring component
- ring component
- rotary component
- rotational component
- rotational machined component
- sample component
- scrap components
- scrapped components
- sealing component
- separating component of driving force
- shaft rotary component
- sheet metal component
- short cycle component
- short operation component
- small batch component
- space-related component
- stabilizing component
- stable component
- stamped blank component
- steady state component
- structural component
- subharmonic component
- subminiature components
- substructure components
- surface mounted component
- system's crucial components
- tangential component of driving force
- three-dimensional curved component
- through-hole component
- tooling components
- transient component
- translational component
- transverse component
- turned component
- two-axis component
- two-dimensional component
- undefined component
- under-skin components
- unstable component
- useful component
- variable componentEnglish-Russian dictionary of mechanical engineering and automation > component
-
14 modular data center
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > modular data center
-
15 method
1) метод; приём; способ2) методика3) технология4) система•- accelerated strength testing method-
benching method-
bullhead well control method-
electrical-surveying method-
electromagnetic surveying method-
long-wire transmitter method-
operational method-
rule of thumb method-
straight flange method of rolling beams-
symbolical method-
tee-test method-
testing method-
triangulation method-
value-iteration method -
16 co-ordination
- координация (контакторов и пускателей) с устройствами защиты от короткого замыкания
координация (контакторов и пускателей) с устройствами защиты от короткого замыкания
-7.2.5 Координация с аппаратами защиты от коротких замыканий
7.2.5.1 Работоспособность в условиях короткого замыкания (номинальный условный ток короткого замыкания)
... Допускается координация двух типов — 1 или 2....
Координация типа 1 требует, чтобы в условиях короткого замыкания контактор или пускатель не создавали опасности для людей или оборудования, хотя они могут оказаться непригодными для дальнейшей эксплуатации без ремонта и замены частей.
Координация типа 2 требует, чтобы в условиях короткого замыкания контактор или пускатель не создавали опасности для людей или оборудования и оставались пригодными для дальнейшей эксплуатации. Возможность сваривания контактов допускается, и в этом случае изготовитель должен рекомендовать меры по обслуживанию аппаратов.
[ ГОСТ Р 50030.4.1-2002 (МЭК 60947-4-1-2000)]Параллельные тексты EN-RU
Co-ordination type 1 and type 2
The co-ordination typologies admitted by the Standard with reference to the behavior of the protection device against short-circuit towards the starter components are classified as “type 1” and “type 2”.
Under short-circuit conditions, the coordination of type “1” allows the contactor and the overload relay to be damaged; as a consequence they could not be able to operate without repairing or replacement of parts.
However, the Standard prescribes that these devices do not cause damages to people or installations, for example with parts of the components ejected outside the enclosure.
Under short-circuit conditions, the coordination of type “2” allows the risk of contact welding, provided that the contacts themselves can be easily separated (for example through a screwdriver) without important deformations.
This type of coordination requires that the contactor or the starter do not cause damages to people or installation and that they are able to resume operation after restoring of the standard conditions.
From the definition of the two coordination typologies it is possible to deduce how “type 1” coordination permits the use of devices of lower sizes, thus with an initial cost saving and reduced dimensions, but to the disadvantage of a high safety and however with subsequent costs for maintenance and replacement in case of faults.
“Type 2” coordination meets higher safety requirements and the possible greater initial cost can be amortized considering that, in case of fault, the switching and protection equipment could start operating again without being replaced.
[ABB]Координация типа 1 и 2 с аппаратами защиты от коротких замыканий
Стандарт определяет два типа координации компонентов пускателя с аппаратами защиты от короткого замыкания: тип 1 и тип 2.
Координация типа 1. В условиях короткого замыкания допускается повреждение контактора и теплового реле, в результате чего они могут оказаться непригодными для дальнейшей эксплуатации без ремонта и замены частей. При этом данные устройства не должны создавать опасности для людей и оборудования, например, вследствие вылета частей пускателя из оболочки.
Координация типа 2. В условиях короткого замыкания допускает сваривание контактов при условии, что они могут быть легко разъединены (например, отверткой) без заметной деформации. Контактор и тепловое реле не должны создавать опасности для людей и оборудования и должны оставаться пригодными для дальнейшей эксплуатации после восстановления нормальных условий.
Из определения двух типов координации можно сделать вывод, что координация типа 1 позволяет использовать устройства, рассчитанные на меньшие рабочие токи, обеспечивая таким образом экономию на первоначальных затратах и сокращение размеров устройств, но снижая при этом уровень безопасности и приводя впоследствии к расходам на техническое обслуживание и замену в случае возникновения неисправности.
Координация типа 2 отвечает более высоким требованиям безопасности и имеет большие первоначальные расходы, которые могут быть компенсированы тем, что в случае возникновения неисправности эксплуатация коммутационных и защитных аппаратов может быть продолжена без замены их частей.
[Перевод Интент]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > co-ordination
-
17 filter
- электрический фильтр
- фильтровать
- фильтрация (файлов)
- фильтр СИЗОД
- фильтр (шлюз)
- фильтр (в информационных технологиях)
- фильтр
- светофильтр
светофильтр
поглотитель
Тёмное защитное стекло
[ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]Тематики
Синонимы
EN
фильтр
Устройство или сооружение для разделения, сгущения или осветления неоднородной системы, содержащей твёрдую или жидкую фазы, пропусканием сквозь пористую перегородку - фильтрующий слой
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]
фильтр
Однородный слой материала, обычно более высокого атомного номера, чем материал образца, располагаемый между источником излучения и пленкой в целях повышенного поглощения более мягкого излучения
[Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]
фильтр
Электрическая схема, пропускающая сигналы в определенной полосе частот и ослабляющая сигналы на всех других частотах
[Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]
фильтр
Электронный узел, пропускающий сигналы в определенной полосе частот и задерживающий остальные сигналы
[Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]
фильтр
(в анализе временных рядов) - математико-статистический прием, формула для «отсеивания» из временного ряда вариаций, ненужных для целей исследования. Так, Ф., который устраняет сезонные или случайные колебания, оставляя для анализа тренд (или, например, длительные экономические циклы), можно назвать низкочастотным Ф. Высокочастотный же, наоборот, выделяет во временном ряде кратковременные колебания.
[ http://slovar-lopatnikov.ru/]Тематики
- виды (методы) и технология неразр. контроля
- фильтрование, центрифугирование, сепарирование
- экономика
EN
DE
FR
фильтр
1. Устройство, пропускающее определенные частоты сигналов и вызывающее затухание других частот.
2. Инструмент для обработки изображений.
[ http://www.morepc.ru/dict/]Тематики
EN
фильтр (шлюз)
Средство, обеспечивающее связь двух однотипных локальных сетей (интерфейсов).
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]Тематики
EN
фильтр СИЗОД
Устройство СИЗОД, удаляющее загрязнения из проходящего через него воздуха.
[ ГОСТ Р 12.4.233-2007]Тематики
EN
фильтрация (файлов)
Команда вывода на панель файлов, соответствующих определенному признаку.
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]Тематики
EN
фильтровать
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
фильтр
-
[IEV number 151-13-55]
электрический фильтр
Электрическое устройство, в котором из спектра поданных на его вход электрических колебаний выделяются (пропускаются на выход) составляющие, расположенные в заданной области частот, и не пропускаются все остальные составляющие
[БСЭ]EN
filter
linear two-port device designed to transmit spectral components of the input quantity according to a specified law, generally in order to pass the components in certain frequency bands and to attenuate those in other bands
Source: 702-09-17 MOD
[IEV number 151-13-55]FR
filtre, m
biporte linéaire destiné à transmettre les composantes spectrales de la grandeur d’entrée selon une loi spécifiée, en général en vue de laisser passer les composantes dans certaines bandes de fréquences et à les affaiblir dans d’autres bandes
Source: 702-09-17 MOD
[IEV number 151-13-55]EN
DE
FR
3.4 фильтр (filter): Аппарат для разделения или удаления загрязнителей из сжатого воздуха или потока газа.
Источник: ГОСТ Р ИСО 12500-1-2009: Фильтры сжатого воздуха. Методы испытаний. Часть 1. Масла в виде аэрозолей оригинал документа
3.7 фильтр (filter): Аппарат для разделения или удаления загрязнителей из сжатого воздуха или потока газа.
Источник: ГОСТ Р ИСО 12500-2-2009: Фильтры сжатого воздуха. Методы испытаний. Часть 2. Пары масел оригинал документа
Англо-русский словарь нормативно-технической терминологии > filter
-
18 method
метод; процедура; способ- antithetic variate method - average ordinate method - average range method - binary search method - conjugate directions method - conjugate gradient method - control chart method - conventional milling method - correlation function method - decision function method - differential control method - Feynman diagram method - first approximation method - gradient projection method - iterative method - large sample method - large sieve method - least-squares regression method - less than fully efficient method - linearly implicit method - method of adjoint gradient - method of algebraic addition - method of alternating directions - method of balanced blocks - method of complex numbers - method of confidence intervals - method of conformal mappings - method of conjugate directions - method of conjugate gradients - method of cyclic descent - method of detached coefficients - method of disjunction of cases - method of divided differences - method of electrical images - method of elimination of quantifiers - method of empty ball - method of extreme values - method of false position - method of feasible directions - method of finite differences - method of first approximation - method of first entrance - method of fitting constants - method of fixed points - method of full enumeration - method of generating functions - method of geometric exhaustion - method of indefinite coefficients - method of infinite descent - method of interval bisection - method of least absolute values - method of least distance - method of least likelihood - method of maximum likelihood - method of means and standard deviations - method of medians and extreme values - method of minimal change - method of minimal variance - method of mirror reflections - method of moving frame - method of multiple comparison - method of orthogonal projections - method of paired associates - method of paired comparisons - method of phase integrals - method of projecting cones - method of proportional parts - method of rotating factors - method of semantic tableaux - method of separation of variables - method of simulaneous displacements - method of stationary phase - method of statistical differentials - method of statistical inference - method of steep variations - method of steepest ascent - method of stochastic approximation - method of straightforward iteration - method of successive displacements - method of successive divisions - method of successive elimination - method of transfinite induction - method of unweighted means - method of variable differences - method of variation of parameters - method of weighted residuals - optimum method - parallel tangents method - precision method - random walk method - recursive method - reduced gradient method - reflected wave method - relative method of measurement - sampling method by variables - statistical sampling method - steepest descent method - time average method -
19 model
1) макет; модель || моделировать2) образец4) модель, тип ( изделия)5) шаблон•- countably saturated model - countably uniform model - coupled channels model - finite state model - finitely generated model - game-theory model - random trial increment model - random walk model - sampling model -
20 space
1) интервал, промежуток2) пробел || оставлять пробелы3) область; площадь4) пространство || пространственный5) космос, космическое пространство6) полость7) расстояние•- absolutely compact space - absolutely embedded space - absolutely thick space - algebraically parallel space - almost complex space - almost expandable space - almost isomorphic space - almost metric space - almost nonsingular space - almost paracompact space - almost pretopological space - analytically ramified covering space - arcwise connected space - centrally harmonic space - compactly ordered space - completely continuous space - completely degenerate space - completely disconnected space - completely harmonic space - completely metric space - completely normal space - completely reducible space - completely regular space - completely reticulated space - completely separable space - completely separated space - completely symmetric space - completely uniformizable space - constant curvature space - continuous sample space - continuously ordered space - contractible in itself space - countably compactifiable space - countably dimensional space - countably generated space - countably infinite space - countably metacompact space - countably multinormed space - countably normed space - countably paracompact space - countably refinable space - countably subcompact space - finitely productive space - finitely sheeted space - finitely triangulated space - fully normal space - general metrizable space - general topological space - global analytic space - globally symmetric space - hereditarily normal space - hereditarily paracompact space - hereditarily separable space - hereditarily symmetric space - holomorphic tangent space - holomorphically complete space - holomorphically convex space - homotopy associative space - iterated loop space - linearly connected space - linearly ordered space - linearly topologized space - load space - locally bounded space - locally closed space - locally compact space - locally complete space - locally connected space - locally contractible space - locally convex space - locally directed space - locally fine space - locally holomorphic space - locally homogeneous space - locally hyperbolic space - locally linear space - locally metrizable space - locally ringed space - locally separable space - locally simply connected space - locally solid space - locally spherical space - locally star-shaped space - locally symmetric space - locally timelike space - locally triangulable space - monotonically normal space - naturally isomorphic space - naturally ordered space - naturally reductive space - nearly paracompact space - negative metric space - normally separated space - not simply connected space - nowhere connected space - null space of linear transformation - n-way projective space - perfectly normal space - perfectly regular space - perfectly screenable space - perfectly separable space - peripherically bicompact space - peripherically compact space - pointwise paracompact space - projectively metric space - quaternion hyperbolic space - quaternion projective space - quaternion vector space - regularly ordered space - relatively discrete space - relatively strong space - sequentially closed space - sequentially compact space - sequentially complete space - sequentially quasicomplete space - sequentially separable space - simply ordered space - simply partitionable space - space of affine connectedness - space of complex homomorphisms - space of continuous functions - space of finite measure - space of linear interpolation - space of right cosets - space of scalar curvature - strongly bounded space - strongly closed space - strongly compact space - strongly complete space - strongly irreducible space - strongly normal space - strongly normed space - strongly paracompact space - strongly pseudocompact space - strongly pseudometrizable space - strongly rigid space - strongly screenable space - structural space - structure space - topologically complete space - totally disconnected space - totally geodesic space - totally imperfect space - totally normal space - totally orderable space - totally ordered space - water jacket space - weakly closed space - weakly compact space - weakly complete space - weakly covering space - weakly dense space - weakly favorable space - weakly n-dimensional space - weakly paracompact space - weakly regular space - weakly separable space - weakly symmetric spaceto space out — полигр. набирать вразрядку
См. также в других словарях:
Two-fluid model — is a traffic model to represent an urban non freeway traffic network. Established around 1970s by Nobel prize winner scientist Ilya Prigogine and Robert Herman, two fluid model of town traffic successfully explain quality of traffic in a… … Wikipedia
Two factor theory of emotion — The Two Factor Theory of Emotion is a social psychology theory that views emotion as having two components (factors): physiological arousal and cognition. According to the theory, cognitions are used to interpret the meaning of physiological… … Wikipedia
Components of jet engines — Diagram of a typical gas turbine jet engine. Air is compressed by the fan blades as it enters the engine, and it is mixed and burned with fuel in the combustion section. The hot exhaust gases provide forward thrust and turn the turbines which… … Wikipedia
Two-factor authentication — (TFA, T FA or 2FA) is an approach to authentication which requires the presentation of two different kinds of evidence that someone is who they say they are. It is a part of the broader family of multi factor authentication, which is a defense in … Wikipedia
Components in Electronics — February 2008 Editor Neil Tyler Categories Design Engineering Frequency Monthly Circulation 14500 … Wikipedia
Components Engine — is the name of a software for the desktop publishingIntroductionSoftware to create and publish interactive spare parts catalogues. It s made of two parts: #A complete graphic editor to create and manipulate the exploded drawing. #A management… … Wikipedia
Two-phase electric power — Two phase electrical power was an early 20th century polyphase alternating current electric power distribution system. Two circuits were used, with voltage phases differing by 90 degrees. Usually circuits used four wires, two for each phase. Less … Wikipedia
Two-stroke engine — Brons two stroke V8 Diesel engine driving a Heemaf generator. A two stroke engine is an internal combustion engine that completes the process cycle in one revolution of the crankshaft (an up stroke and a down stroke of the piston, compared to… … Wikipedia
Two-vector — A two vector is a tensor of type (2,0) and it is the dual of a two form, meaning that it is a linear functional which maps two forms to the real numbers (or more generally, to scalars).The tensor product of a pair of vectors is a two vector. Then … Wikipedia
Components of medieval armour — Following is a table that concisely identifies various pieces of medieval armour, mostly plate but some mail, arranged by the part of body that is protected and roughly by date. No attempt has been made to identify fastening components or various … Wikipedia
Two-sided Laplace transform — In mathematics, the two sided Laplace transform or bilateral Laplace transform is an integral transform closely related to the Fourier transform, the Mellin transform, and the ordinary or one sided Laplace transform. If f ( t ) is a real or… … Wikipedia